Snippets

Misc

  • Check whether an environment variable is empty

    nzchar(Sys.getenv("blopblopblop"))
    #> [1] FALSE
    withr::with_envvar(
      new = c("blopblopblop" = "bla"),
      nzchar(Sys.getenv("blopblopblop"))
    )
  • Use a package for a single instance using {withr::with_package}

    • Using library() will keep the package loaded during the whole session, with_package() just runs the code snippet with that package temporarily loaded. This can be useful to avoid namespace collisions for example
  • Read .csv from a zipped file

    # long way
    tmpf <- tempfile()
    tmpd <- tempfile()
    download.file('https://website.org/path/to/file.zip', tmpf)
    unzip(tmpf, exdir = tmpd)
    y <- data.table::fread(file.path(tmpd,
                           grep('csv$',
                                unzip(tmpf, list = TRUE)$Name,
                                value = TRUE)))
    unlink(tmpf)
    unlink(tmpd)
    
    # quick way
    y <- data.table::fread('curl https://website.org/path/to/file.zip | funzip')
  • Load all R scripts from a directory: for (file in list.files("R", full.names = TRUE)) source(file)

  • View dataframe in View as html table using {kableExtra}

    df_html <- kableExtra::kbl(rbind(head(df, 5), tail(df, 5)), format = "html")
    print(df_html)

Options

  • {readr}

    options(readr.show_col_types = FALSE)

Cleaning

  • Misc

    • Dates should follow YYYY-MM-DD format (ISO 8601 standard)
  • Remove all objects except: rm(list=setdiff(ls(), c("train", "validate", "test")))

  • Remove NAs

    • dataframes

      df %>% na.omit
      df %>% filter(complete.cases(.))
      df %>% tidyr::drop_na()
    • variables

      df %>% filter(!is.na(x1))
      df %>% tidyr::drop_na(x1)
  • Find duplicate rows

    • {datawizard} - Extract all duplicates, for visual inspection. Note that it also contains the first occurrence of future duplicates, unlike duplicated or dplyr::distinct. Also contains an additional column reporting the number of missing values for that row, to help in the decision-making when selecting which duplicates to keep.

      df1 <- data.frame(
        id = c(1, 2, 3, 1, 3),
        year = c(2022, 2022, 2022, 2022, 2000),
        item1 = c(NA, 1, 1, 2, 3),
        item2 = c(NA, 1, 1, 2, 3),
        item3 = c(NA, 1, 1, 2, 3)
      )
      
      data_duplicated(df1, select = "id")
      #>   Row id year item1 item2 item3 count_na
      #> 1   1  1 2022    NA    NA    NA        3
      #> 4   4  1 2022     2     2     2        0
      #> 3   3  3 2022     1     1     1        0
      #> 5   5  3 2000     3     3     3        0
      
      data_duplicated(df1, select = c("id", "year"))
      #> 1   1  1 2022    NA    NA    NA        3
      #> 4   4  1 2022     2     2     2        0
    • {dplyr}

      dups <- dat %>% 
        group_by(BookingNumber, BookingDate, Charge) %>% 
        filter(n() > 1)
    • base r

      df[duplicated(df["ID"], fromLast = F) | duplicated(df["ID"], fromLast = T), ]
      
      ##        ID value_1 value_2 value_1_2
      ## 2  ID-003      6      5      6 5
      ## 3  ID-006      1      3      1 3
      ## 4  ID-003      1      4      1 4
      ## 5  ID-005      5      5      5 5
      ## 6  ID-003      2      3      2 3
      ## 7  ID-005      2      2      2 2
      ## 9  ID-006      7      2      7 2
      ## 10 ID-006      2      3      2 3
      • df[duplicated(df["ID"], fromLast = F) doesn’t include the first occurence, so also counting from the opposite direction will include all occurences of the duplicated rows
    • {tidydensity}

      data <- data.frame(
        x = c(1, 2, 3, 1),
        y = c(2, 3, 4, 2),
        z = c(3, 2, 5, 3)
      )
      
      check_duplicate_rows(data)
      #> [1] FALSE  TRUE FALSE FALSE
  • Remove duplicated rows

    • {datawizard} - From all rows with at least one duplicated ID, keep only one. Methods for selecting the duplicated row are either the first duplicate, the last duplicate, or the “best” duplicate (default), based on the duplicate with the smallest number of NA. In case of ties, it picks the first duplicate, as it is the one most likely to be valid and authentic, given practice effects.

      df1 <- data.frame(
        id = c(1, 2, 3, 1, 3),
        item1 = c(NA, 1, 1, 2, 3),
        item2 = c(NA, 1, 1, 2, 3),
        item3 = c(NA, 1, 1, 2, 3)
      )
      
      data_unique(df1, select = "id")
      #> (2 duplicates removed, with method 'best')
      #>   id item1 item2 item3
      #> 1  1     2     2     2
      #> 2  2     1     1     1
      #> 3  3     1     1     1
    • base R

      df[!duplicated(df[c("col1")]), ]
    • dplyr

      distinct(df, col1, .keep_all = TRUE)
  • Showing all combinations present in the data and creating all possible combinations

  • Fuzzy Join (alt to case_when)

    ref.df <- data.frame(
                bucket = c(“High”, “Medium-High”, “Medium-Low”, “Low”),
                value.high = c(max(USArrests$Assault), 249, 199, 149),
                value.low = c(250, 200, 150, min(USArrests$Assault)))
    USArrests %>% 
      fuzzy_join(ref.df, 
                        by = c("Assault"="value.low",
                              "Assault" = 'value.high'), 
                match_fun = c(`>=`,`<=`)) %>% 
      select(-c(value.high, value.low))
    • Also does partial matches

  • Remove elements of a list by name

    purrr::discard_at(my_list, "a")
    listr::list_remove
  • Filter row index before/after a condition

    • Example 1: Find flights that departed after an “AA” flight departed (article)

      flights_df |> 
        select(dep_time, flight, carrier) |> 
        arrange(dep_time) |> 
        slice(
          unique(sort(c(
            which(carrier == "AA"),
            which(carrier == "AA") + 1
          )))
        )
      • which(carrier == "AA") isn’t strictly necessary. It also includes AA flight that is proceded by the flight we’re looking for in case that’s something you also want to look at.
      • Without sort, the output row order will have those strictly unnecessary AA flights first, then the flights we’re interested instead of them being in order of departure time. c will contanenate the row indexes outputted by the which functions and sort will order them. This will result in the order being by departure time.
      • There’s a duplicate row, so unique gets rid of it.
    • Example 2: Get countries that are immediately before and after Germany in GDP for each year (article)

      gdp_dat <- gapminder_df |> 
        group_by(year) |> 
        arrange(gdpPercap) |> 
        slice(as.integer(outer(-1:1, 
                               which(country == "Germany"), 
                               `+` ))) |> 
        # for ordering columns in plot
        mutate(grp = forcats::fct_inorder(c("lo", "is", "hi"))) |> 
        # Ungroup and make ggplot
        ungroup()
      • * This assumes Germany will always have a country above and below it in GDP. See article for more robust code *

      • Instead using the syntax in the previous example where 1 is added to the index, outer is used so that you don’t have to repeat a bunch of which statements.

        • -1:1 gets the rows before, after, and including the Germany row.
        • outer with + stacks the vectors of indexes from each which statment on top of each other into a matrix
        • as.integer coerces the matrix into a vector so slice can filter the indexes.
        • See R, Base R >> Functions >> outer for a details on the outer function
      • Chart code

        Code

        ggplot(gdp_dat, 
               aes(as.factor(year), 
                   gdpPercap, 
                   group = grp)) +
          geom_col(aes(fill = grp == "is"), position = position_dodge()) +
          geom_text(
            aes(label = country_code),
            vjust = 1.3,
            position = position_dodge(width = .9)
          ) +
          scale_fill_manual(
            values = c("grey75", "steelblue"),
            guide = guide_none()
          ) +
          theme_classic() +
          labs(x = "Year", y = "GDP per capita")
  • Create labelled columns (source)

    penguins_labelled <- penguins |> 
      labelled::set_variable_labels(
        species           = "Penguin species",
        island            = "Island in Palmer Archipelago, Antarctica",
        bill_length_mm    = "Bill length (mm)",
        bill_depth_mm     = "Bill depth (mm)",
        flipper_length_mm = "Flipper length (mm)",
        body_mass_g       = "Body mass (g)",
        sex               = "Penguin sex",
        year              = "Study year"
      )
    View(penguins_labelled)
    • Create a dictionary from the labelled df

      penguins_dictionary <- penguins_labelled |> 
        labelled::generate_dictionary()
      penguins_dictionary |> 
        knitr::kable()

Transformations

  • Dummy Encode (article)
    • Some modeling packages don’t accept factor variables and dummies must be explicitly provided.

    • dplyr

      penguins_explicit <- 
        reduce(
          levels(penguins$species)[-1],
          ~ mutate(.x, !!paste0("species", .y) := as.integer(species == .y)),
          .init = penguins
        )
      • .x provides the .init tibble and the successively recursed tibbles

      • To get a feel for what’s happening, here’s a simple illustration of the tidyevall bang-bang syntax plus walrus operator

        new_cols <- c("a", "b", "c")
        # add 3 cols called a,b,c with NAs
        mtcars %>% 
          head() %>% 
          select(mpg) %>% 
          mutate(!!new_cols[1] := NA) %>% 
          mutate(!!new_cols[2] := NA) %>% 
          mutate(!!new_cols[3] := NA)
    • data.table

      penguins_dt <- as.data.table(penguins)
      
      treatment_lvls <- levels(penguins_dt$species)[-1]
      treatment_cols <- paste0("species", treatment_lvls)
      
      penguins_dt[, (treatment_cols) := lapply(treatment_lvls, function(x){as.integer(species == x)})][]

Functions

  • Create formula from string

    analysis_formula <- 'Days_Attended ~ W + School'
    estimator_func <- function(data) lm(as.formula(analysis_formula), data = data)
  • Recursive Function

    • Example

      # Replace pkg text with html
      replace_txt <- function(dat, patterns) {
        if (length(patterns) == 0) {
          return(dat)
        }
      
        pattern_str <- patterns[[1]]$pattern_str
        repl_str <- patterns[[1]]$repl_str
        replaced_txt <- dat |>
          str_replace_all(pattern = pattern_str, repl_str)
      
        new_patterns <- patterns[-1]
        replace_txt(replaced_txt, new_patterns)
      }
      • Arguments include the dataset and the iterable
      • Tests whether function has iterated through pattern list
      • Removes 1st element of the list
      • replace_text calls itself within the function with the new list and new dataset
    • Example: Using Recall and tryCatch

      load_page_completely <- function(rd) {
        # load more content even if it throws an error
        tryCatch({
            # call load_more()
            load_more(rd)
            # if no error is thrown, call the load_page_completely() function again
            Recall(rd)
        }, error = function(e) {
            # if an error is thrown return nothing / NULL
        })
      }
      • load_more is a user defined function
      • Recall is a base R function that calls the same function it’s in.
  • Error Handling for Internal Functions (source)

    library(cli)
    library(rlang)
    
    assert3 <- 
      function(x, 
               y, 
    1           arg = caller_arg(x),
    2           call_expr = caller_call()) {
    
    3  if (!inherits(x, y)) {
    4    abort(format_error("{.strong {arg}} must be of class {y}"),
    5          call = call_expr)
      }
    }
    
    some_fun3 <- function(x, class) {
      assert3(x, class)
    }
    
    some_fun3(5, "character")
    #> Error in `some_fun3()`:
    #> ! x must be of class character
    #> Run `rlang::last_trace()` to see where the error occurred.
    
    last_trace()
    #> <error/rlang_error>
    #> Error in `some_fun3()`:
    #> ! x must be of class character
    #> ---
    #> Backtrace:
    #>     ▆
    #>  1. └─global some_fun3(5, "character")
    #>  2.   └─global assert3(x, class)
    #> Run rlang::last_trace(drop = FALSE) to see 1 hidden frame.
    1
    rlang::caller_arg formats the value of an argument (e.g. x) into a string so that can be used in error messages
    2
    rlang::caller_call (with default being n = 1) goes 1 level up to get the function that called this function.
    3
    inherit is a logical that tests whether x has the class indicated by y. Similar to an is.* function.
    4
    cli::.strong adds bold text styling to the value
    5
    call in rlang::abort specifies the environment to mention in the error message.
    • By using rlang::caller_call in the error function, the user will know which function in their script failed which is 1 level up from the assert (internal function).
    • Then rlang::last_trace is used to drill down and discover that error was triggered in the internal function (e.g. assert3)

Calculations

  • Compute the running maximum per group

    df <- structure(list(
      var = c(5L, 2L, 3L, 4L, 0L, 3L, 6L, 4L, 8L, 4L),
      group = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L),
                        .Label = c("a", "b"), 
                        class = "factor"),
      time = c(1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L)),
      .Names = c("var", "group","time"),
      class = "data.frame", 
      row.names = c(NA, -10L))
    
    df[order(df$group, df$time),]
    #    var group time
    # 1    5    a    1
    # 2    2    a    2
    # 3    3    a    3
    # 4    4    a    4
    # 5    0    a    5
    # 6    3    b    1
    # 7    6    b    2
    # 8    4    b    3
    # 9    8    b    4
    # 10  4    b    5
    
    (df$curMax <- 
      ave(df$var, 
          df$group, 
          FUN=cummax))
    
    var  |  group  |  time  |  curMax
    5      a        1        5
    2      a        2        5
    3      a        3        5
    4      a        4        5
    0      a        5        5
    3      b        1        3
    6      b        2        6
    4      b        3        6
    8      b        4        8
    4      b        5        8

Time Series

Base-R

  • The previous month and its year (source)

    library(lubridate)
    prev_month <- 
      add_with_rollback(today(), months(-1)) |> 
      month(label = TRUE, abbr = FALSE)
    
    prev_months_yr <- 
      add_with_rollback(today(), months(-1)) |> 
      year()
    
    # base r
    format(seq(Sys.Date(), length = 2, by = "-1 month")[2], "%B %Y")
  • Intervals

    • Difference between dates

      # Sample dates
      start_date <- as.Date("2022-01-15")
      end_date <- as.Date("2023-07-20")
      
      # Calculate time difference in days
      time_diff_days <- end_date - start_date
      
      # Convert days to months
      months_diff_base <- as.numeric(time_diff_days) / 30.44  # average days in a month
      
      cat("Number of months using base R:", round(months_diff_base, 2), "\n")
      #> Number of months using base R: 18.1 
  • Moving Windows

    • Example (article)
      • For each 3 day window:

        • Find the minimum value
        • Find the time of the minimum value
        • Find the value of two other columns at that time of the minimum value
      • Code

        (ts_df <- tibble(
          time = 1:6,
          val = sample(1:6 * 10), 
          col1 = rnorm(6),
          col2 = rnorm(6)
        ))
        #> # A tibble: 6 × 4
        #>    time   val   col1   col2
        #>   <int> <dbl>  <dbl>  <dbl>
        #> 1     1    10 -0.529  0.928
        #> 2     2    30  0.874 -0.967
        #> 3     3    60  1.50   1.49 
        #> 4     4    40 -1.14   0.575
        #> 5     5    20  0.114  0.307
        #> 6     6    50 -0.712 -0.291
        
        moving_mins <- ts_df |> 
          slice(
            outer(-2:0, row_number(), "+")[,-(1:2)] |> 
              apply(MARGIN = 2L, \(i) i[which.min(val[i])])
          ) |> 
          rename_with(~ paste0("min3val_", .x)) |> 
          mutate(time = ts_df$time[-(1:2)])
        
        left_join(ts_df, moving_mins, by = "time")
        #>    time   val   col1   col2 min3val_time min3val_val min3val_col1 min3val_col2
        #>   <int> <dbl>  <dbl>  <dbl>        <int>       <dbl>        <dbl>        <dbl>
        #> 1     1    10 -0.529  0.928           NA          NA       NA           NA    
        #> 2     2    30  0.874 -0.967           NA          NA       NA           NA    
        #> 3     3    60  1.50   1.49             1          10       -0.529        0.928
        #> 4     4    40 -1.14   0.575            2          30        0.874       -0.967
        #> 5     5    20  0.114  0.307            5          20        0.114        0.307
        #> 6     6    50 -0.712 -0.291            5          20        0.114        0.307
        • See article for in-depth breakdown of what the code is doing.
        • outer creates a column-wise lagged matrix
          • Also see Cleaning >> Filter row index before/after a condition >> Example 2 which gives more detail on what’s happening with outer
        • apply loops through each column and selects the index of the minimum value
        • slice filters the dateset for those indexes
        • Everything else is just adding columns back from the original df

{lubridate}

  • Docs

  • Arithmetic

    • Adding seconds to a timestamp

      hms("05:10:02") + seconds_to_period(180)
      #> [1] "5H 13M 2S"
      • This increases minutes when the seconds exceeds 59 instead of just adding to seconds, e.g “5H 10M 182S”
  • Intervals

    • Lubridate’s interval functions

    • Notes from: Wrangling interval data using lubridate

    • Difference between dates

      # Load the lubridate package
      library(lubridate)
      
      # Sample dates
      start_date <- ymd("2022-01-15")
      end_date <- ymd("2023-07-20")
      
      # Calculate months difference using lubridate
      months_diff_lubridate <- interval(start_date, end_date) %/% months(1)
      
      cat("Number of months using lubridate:", months_diff_lubridate, "\n")
      #> Number of months using lubridate: 18 
      • %/% is used for floor division by months. For decimals, just use /
    • Data

      (house_df <- tibble(
        person_id  = factor(c("A10232", "A10232", "A10232", "A39211", "A39211", "A28183", "A28183", "A10124")),
        house_id   = factor(c("H1200E", "H1243D", "H3432B", "HA7382", "H53621", "HC39EF", "HA3A01", "H222BA")),
        start_date = ymd(c("20200101", "20200112", "20211120", "19800101", "19900101", "20170303", "20190202", "19931023")),
        end_date   = ymd(c("20200112", "20211120", "20230720", "19891231", "20170102", "20180720", "20230720", "20230720"))
      ))
      
      #>   A tibble: 8 × 4
      #>   person_id house_id start_date end_date  
      #>   <fct>     <fct>    <date>     <date>    
      #> 1 A10232    H1200E   2020-01-01 2020-01-12
      #> 2 A10232    H1243D   2020-01-12 2021-11-20
      #> 3 A10232    H3432B   2021-11-20 2023-07-20
      #> 4 A39211    HA7382   1980-01-01 1989-12-31
      #> 5 A39211    H53621   1990-01-01 2017-01-02
      #> 6 A28183    HC39EF   2017-03-03 2018-07-20
      #> 7 A28183    HA3A01   2019-02-02 2023-07-20
      #> 8 A10124    H222BA   1993-10-23 2023-07-20
    • Create interval column

      house_df <- 
        house_df |> 
        mutate(
          # create the interval
          int = interval(start_date, end_date), 
          # drop the start/end columns
          .keep = "unused"                      
        )
      
      house_df
      #>   A tibble: 8 × 3
      #>   person_id house_id int                           
      #>   <fct>     <fct>    <Interval>                    
      #> 1 A10232    H1200E   2020-01-01 UTC--2020-01-12 UTC
      #> 2 A10232    H1243D   2020-01-12 UTC--2021-11-20 UTC
      #> 3 A10232    H3432B   2021-11-20 UTC--2023-07-20 UTC
      #> 4 A39211    HA7382   1980-01-01 UTC--1989-12-31 UTC
      #> 5 A39211    H53621   1990-01-01 UTC--2017-01-02 UTC
      #> 6 A28183    HC39EF   2017-03-03 UTC--2018-07-20 UTC
      #> 7 A28183    HA3A01   2019-02-02 UTC--2023-07-20 UTC
      #> 8 A10124    H222BA   1993-10-23 UTC--2023-07-20 UTC
    • Intersection Function

      int_intersect <- function(int, int_limits) {
        int_start(int) <- pmax(int_start(int), int_start(int_limits))
        int_end(int)   <- pmin(int_end(int), int_end(int_limits))
        return(int)
      }
      • The red dashed line is the reference interval and the blue solid line is the interval of interest
      • The function creates an interval thats the intersection of both intervals (segment between black parentheses)
    • Proportion of the Reference Interval

      int_proportion <- function(dat, reference_interval) {
      
        # start with the housing data
        dat |> 
          # only retain overlapping rows, this makes the following
          # operations more efficient by only computing what we need
          filter(int_overlaps(int, reference_interval)) |> 
          # then, actually compute the overlap of the intervals
          mutate(
            # use our earlier truncate function
            int_sect = int_intersect(int, reference_interval),
            # then, it's simple to compute the overlap proportion
            prop = int_length(int_sect) / int_length(reference_interval)
          ) |> 
          # combine different intervals per person
          summarize(prop_in_nl = sum(prop), .by = person_id)
      
      }
      • Example

        int_2017  <- interval(ymd("20170101"), ymd("20171231"))
        prop_2017 <- 
          int_proportion(dat = house_df, 
                         reference_interval = int_2017)
        
        prop_2017
        
        #> # A tibble: 3 × 2
        #>   person_id prop_in_nl
        #>   <fct>          <dbl>
        #> 1 A39211       0.00275
        #> 2 A28183       0.832  
        #> 3 A10124       1      

Parallelization

  • Making a cluster out of SSH connected machines (Thread)
    • Basic

      pacman::p_load(parallely, future, furrr)
      nodes = c("host1", "host2")
      plan(cluster, workers = nodes)
      future_map(...)
    • With {renv}

      pacman::p_load(parallely, future, furrr)
      nodes = c("host1", "host2")
      plan(cluster, workers = nodes, rscript_libs = .libPaths())
      future_map(...)