APIs

Misc

  • Definition
  • REST API
  • Packages
    • {{requests-ratelimiter}} - A simple wrapper around pyrate-limiter v2 that adds convenient integration with the requests library
    • {beekeeper} - Used to create and maintain R packages that wrap APIs.
  • Resources
  • Design questions
    • Should the API receive the entire datapoint (e.g sensitve customer info) or just an ID for you to query in a database itself?
    • Where should the model be loaded from? Disk? Cloud? (see Production, Deployment >> Model Deployment Strategies)
    • What diagnostic output should be returned along with result?
  • Use CI/CD to unit test, rebuild, and deploy the API every time there’s a push a commit to the production branch of your repo.
  • Best Practices Thread
    • Versioning
    • IDs vs UUIDs
    • Nested resources
    • JSON API
    • Let the client decide what it wants
  • Important to create unit tests to use before code goes into production
    • Test all endpoints
    • Check data types
    • {testthat}
      • Example

        library(testthat)
        source("rest_controller.R")
        testthat("output is a probability", {
            input <- list(id = 123, name = "Ralph")
            result <- make_prediction(input)
            expect_gte(result, 0)
            expect_lte(result, 1)
        })
  • An IO-bound task spends most of its time waiting for IO responses, which can be responses from webpages, databases, or disks. For web development where a request needs to fetch data from APIs or databases, it’s an IO-bound task and concurrency can be achieved with either threading or async/await to minimize the waiting time from external resources.

Terms

  • Async/Await - Unlike threading where the OS has control, with this method, we can decide which part of the code can be awaited and thus control can be switched to run other parts of the code. The tasks need to cooperate and announce when the control will be switched out. And all this is done in a single thread with the await command. (article)
  • Body - information that is sent to the server. (Can’t use with GET requests.)
  • Endpoint - a part of the URL you visit. For example, the endpoint of the URL https://example.com/predict is /predict
  • Headers - used for providing information (think authentication credentials, for example). They are provided as key-value pairs
  • Method - a type of request you’re sending, can be either GET, POST, PUT, PATCH, and DELETE. They are used to perform one of these actions: Create, Read, Update, Delete (CRUD)
  • Pooled Requests - A technique where multiple individual requests are combined or “pooled” into a single API call. May require more complex error handling, as you’ll need to manage partial successes or failures within the pooled request
    • Methods

      • Batch endpoints: Some APIs offer specific endpoints designed to handle multiple operations in a single call.
      • Request bundling: Clients can aggregate multiple requests into a single payload before sending it to the API.
  • Threading - Uses multiple threads and takes turns to run the code. It achieves concurrency with pre-emptive multitasking which means we cannot determine when to run which code in which thread. It’s the operating system that determines which code should be run in which thread. The control can be switched at any point between threads by the operating system. This is why we often see random results with threading (article)

Request Methods

  • Misc

    • If you’re writing a function or script, you should check whether the status code is in the 200s before additional code runs.
    • HTTP 429 - Too Many Requests
  • GET

    • GET is a request for data where the parameters for that request are inserted into the URL usually after a ?.

    • Examples

      # example 1
      args <- list(key = "<key>", id = "<id>", format = "json", output = "full", count = "2")
      api_json <- GET(url = URL, query = args)
      
      # example 2 (with headers)
      res = GET("https://api.helium.io/v1/dc_burns/sum",
                query = list(min_time = "2020-07-27T00:00:00Z"
                            , max_time = "2021-07-27T00:00:00Z"),
                add_headers(`Accept`='application/json'
                            , `Connection`='keep-live'))
      
      # example 3
      get_book <- function(this_title, this_author = NA){
        httr::GET(
          url = url,
          query = list(
            apikey = Sys.getenv("ACCUWEATHER_KEY"),
            q = ifelse(
              is.na(this_author),
              glue::glue('intitle:{this_title}'),
              glue::glue('intitle:{this_title}+inauthor:{this_author}')
              )))
      }
    • Example: Pull parsed json from raw format

      my_url <- paste0("http://dataservice.accuweather.com/forecasts/",
                        "v1/daily/1day/571_pc?apikey=", 
                       Sys.getenv("ACCUWEATHER_KEY"))
      my_raw_result <- httr::GET(my_url)
      
      my_content <- httr::content(my_raw_result, as = 'text')
      
      dplyr::glimpse(my_content) #get a sense of the structure
      dat <- jsonlite::fromJSON(my_content)
      • content has 3 option for extracting and converting the content of the GET output.
      • “raw” output asis
      • “text” can be easiest to work with for nested json
      • “parsed” is a list
  • POST

    • Also see Scraping >> POST

    • POST is also a request for data, but the parameters are typically sent in the body of a json. So, it’s closer to sending data and receiving data than a GET request is.

    • When you fill out a html form or search inputs on a website and click a submit button, this is a POST request in the background being sent to the webserver.

    • Example

      # base_url from get_url above
      base_url <- "https://tableau.bi.iu.edu/"
      vizql <- dashsite_json$vizql_root
      session_id <- dashsite_json$sessionid
      sheet_id <- dashsite_json$sheetId
      
      post_url <- glue("{base_url}{vizql}/bootstrapSession/sessions/{session_id}")
      
      dash_api_output <- 
        POST(post_url,
             body = list(sheet_id = sheet_id),
             encode = "form",
             timeout(300))
    • Example: json body

      • From thread
      • “use auto_unbox = TRUE; otherwise there are some defaults that mess with your API format”
      • “url” is the api endpoint (obtain from api docs)
      • headers

{httr2}

  • POST
    • Contacts Home Assistant API and turns off a light.
  • Paginated Requests
    • Example: (source)
      • request_complete checks the response to see whether another is needed.
      • req_perform_iterative is added to the request, giving it a canned iterator that takes your function and bumps a query parameter (page for this API) every time you do need another request

{plumber}

  • Serves R objects as an API
  • 3 Main Components: Function Definition, Request Type, API Endpoint
  • Misc
    • Adding `host = “0.0.0.0” to run_pr() opens the API to external traffic
    • {valve} - Auto-scales plumber APIs concurrently using Rust libraries Axum, Tokio, and Deadpool — similar to how gunicorn auto-scales fastapi and Flask apps
  • Cloud options for serving Plumber APIs
    • Install everything on an Amazon EC2 instance

    • Using a Docker image

      • Saturn Cloud Deployments

      • Google Cloud Run

      • Docker/Kubernetes

    • Managed Solutions

      • RStudio Connect
      • Digital Ocean
  • Load Testing
    • {loadtest}
      • Test how your API performs under various load scenarios

      • Outputs tibble of various measurements

      • Example:

        library(loadtest)
        results <- loadtest(url = <api_url>, method = "GET", threads = 200, loops = 1000)
        • Says simulate 200 users hitting the API 1000 times
  • Documentation
    • Plumber creates an OpenAPI (aka Swagger) YAML file that documents parameters, tags, description, etc. automatically for users to know how to use your API
    • Access
      • View webui, e.g .(http://127.0.0.1:9251/__docs__/)
    • Edit the yaml
      • e.g. (http://127.0.0.1:9251/openapi.json)
  • Scaling
    • Natively can only handle 1 request at a time
    • {valve} - Parallelize your plumber APIs. Redirects your plumbing for you.
    • {future} - can be used to spawn more R processes to handle multiple requests
      • Resource: Rstudio Global 2021

      • Example

        # rest_controller.R
        future::plan("multisession")
        
        @* @post /make-prediction
        make_prediction <- function (req) {
            future::future({       
                user_info <- req$body
                df_user <- clean_data(user_info) # sourced helper function
                result <- predict(model, data = df_user)
                result
            })
        }
  • Logging
    • Useful for debugging, monitoring performance, monitoring usage
    • Provides data for ML monitoring to alert in case of data/model drift
    • {logger}
      • Example:

        #* @post /make-prediction
        make_predicition <- function(req) {
            user_info <- req$body
            df_user <- clean_data(user_info) # sourced helper function
            result <- predict(model, data = df_user)
            logger::log_info(glue("predicted_{user_info$id}_[{result}]{style='color: #990000'}"))
            aws.s3::s3save(data.frame(id = user_info$id, result = result), ...)
            result
        }
  • Example: Basic Get request
    • rest_controller.R

      #* @get /sum
      function(a, b) {
          as.numeric(a) + as.numeric(b)
      }
      • “/sum” is an endpoint
    • Run Plumber on rest_controller.R

      plumber::pr("rest_controller.R") %>%
          plumber::pr_run(port = 80)
      • 80 is a standard browser port
    • Get the sum  of 1 + 2 by sending a Get request

      • Type “127.0.0.1/sum?a=1&b=2” into your browser
      • httr::GET("127.0.0.1/sum?a=1&b=2")
  • Example: Basic Model Serving
    • rest_controller.R

      source("helper_functions.R")
      library(tidyverse)
      
      model <- read_rds("trained_model.rds")
      
      #* @post /make-prediction
      make_predicition <- function(req) {
          user_info <- req$body
          df_user <- clean_data(user_info) # sourced helper function
          result <- predict(model, data = df_user)
          result
      }

{{requests}}

  • Use Session to make a pooled request to the same host (Video, Docs)
    • Example

      import pathlib
      import requests
      
      links_file = pathilib.Path.cwd() / "links.txt"
      links = links_file.read_text().splitlines()[:10]
      headers = {"User-Agent": "Mozilla/5.0 (X!!; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0}
      
      # W/o Session (takes about 16sec)
      for link in links:
        response = requests.get(link, headers=headers)
        print(f"{link} - {response.status_code}")
      
      # W/Session (takes about 6sec)
      with requests.Session() as session:
        for link in links:
          response = session.get(link, headers=headers)
          print(f"{link} - {response.status_code}")
      • The first way syncronously makes a get request to each URL
        • Makes several requests to the same host
      • The second way reuses the underlying TCP connection, which can result in a significant performance increase.
  • Retrieve Paged Results One at a Time
    • Generator

      from typing import Iterator, Dict, Any
      from urllib.parse import urlencode
      import requests
      
      
      def iter_beers_from_api(page_size: int = 5) -> Iterator[Dict[str, Any]]:
          session = requests.Session()
          page = 1
          while True:
              response = session.get('https://api.punkapi.com/v2/beers?' + urlencode({
                  'page': page,
                  'per_page': page_size
              }))
              response.raise_for_status()
      
              data = response.json()
              if not data:
                  break
      
              yield from data
      
              page += 1
    • Iterate through each page of results

      beers = iter_beers_from_api()
      next(beers)
      #> {'id': 1,
      #>  'name': 'Buzz',
      #>  'tagline': 'A Real Bitter Experience.',
      #>  'first_brewed': '09/2007',
      #>  'description': 'A light, crisp and bitter IPA brewed...',
      #>  'image_url': 'https://images.punkapi.com/v2/keg.png',
      #>  'abv': 4.5,
      #>  'ibu': 60,
      #>  'target_fg': 1010,
      #> ...
      #> }
      next(beers)
      #> {'id': 2,
      #>  'name': 'Trashy Blonde',
      #>  'tagline': "You Know You Shouldn't",
      #>  'first_brewed': '04/2008',
      #>  'description': 'A titillating, ...',
      #>  'image_url': 'https://images.punkapi.com/v2/2.png',
      #>  'abv': 4.1,
      #>  'ibu': 41.5,
      #>  ...
      #> }
  • Use Concurrency
    • Use threads on your computer to make requests at the same time. It’s essentially parallelism.

    • Example (source)

      import requests
      from concurrent.futures import ThreadPoolExecutor, as_completed
      from requests_ratelimiter import LimiterSession
      
      # Limit to max 2 calls per second
      request_session = LimiterSession(per_second=2)
      
      
      def get_post(post_id: int) -> dict:
          if post_id > 100:
              raise ValueError("Parameter `post_id` must be less than or equal to 100")
      
          url = f"https://jsonplaceholder.typicode.com/posts/{post_id}"
      
          # Use the request_session now
          r = request_session.get(url)
          r.raise_for_status()
          result = r.json()
          # Remove the longest key-value pair for formatting reasons
          del result["body"]
          return result
      
      
      if __name__ == "__main__":
          print("Starting to fetch posts...\n")
      
          # Run post fetching concurrently
          with ThreadPoolExecutor() as tpe:
              # Submit tasks and get future objects
              futures = [tpe.submit(get_post, post_id) for post_id in range(1, 16)]
              for future in as_completed(futures):
                  # Your typical try/except block
                  try:
                      result = future.result()
                      print(result)
                  except Exception as e:
                      print(f"Exception raised: {str(e)}")
                  future.add_done_callback(future_callback_fn)
                  result = future.result()
                  print(result)
      • ThreadPoolExecutor class manages a pool of worker threads for you
        • Number of CPUs + 4, e.g. 12 CPU cores means 16 ThreadPoolExecutor workers
      • Uses a standard try/except to handle errors. Errors don’t stop code from completing the other requests
      • future.add_done_callback calls your custom Python function. This function will have access to the Future object
  • Using API keys
    • Example (source)

      import requests
      from requests.auth import HTTPBasicAuth
      import json
      
      username = "ivelasq@gmail.com"
      api_key = r.api_key
      
      social_url = "https://ivelasq.atlassian.net/rest/api/3/search?jql=project%20=%20KAN%20AND%20text%20~%20%22\%22social\%22%22"
      blog_url = "https://ivelasq.atlassian.net/rest/api/3/search?jql=project%20=%20KAN%20AND%20text%20~%20%22\%22blog\%22%22"
      
      def get_response_from_url(url, username, api_key):
          auth = HTTPBasicAuth(username, api_key)
      
          headers = {
              "Accept": "application/json"
          }
      
          response = requests.request("GET", url, headers=headers, auth=auth)
      
          if response.status_code == 200:
              results = json.dumps(json.loads(response.text), sort_keys=True, indent=4, separators=(",", ": "))
              return results
          else:
              return None
      
      social_results = get_response_from_url(social_url, username, api_key)
      blog_results = get_response_from_url(blog_url, username, api_key)

{{http.client}}

  • Docs

  • The Requests package is recommended for a higher-level HTTP client interface.

  • Example 1: Basic GET

    import http.client
    import json
    
    conn = http.client.HTTPSConnection("api.example.com")
    conn.request("GET", "/data")
    response = conn.getresponse()
    data = json.loads(response.read().decode())
    conn.close()
  • Example 2:

    • GET

      import http.client
      
      url = '/fdsnws/event/1/query'
      query_params = {
          'format': 'geojson',
          'starttime': "2020-01-01",
          'limit': '10000',
          'minmagnitude': 3,
          'maxlatitude': '47.009499',
          'minlatitude': '32.5295236',
          'maxlongitude': '-114.1307816',
          'minlongitude': '-124.482003',
      }
      full_url = f'https://earthquake.usgs.gov{url}?{"&".join(f"{key}={value}" for key, value in query_params.items())}'
      
      print('defined params...')
      
      conn = http.client.HTTPSConnection('earthquake.usgs.gov')
      conn.request('GET', full_url)
      response = conn.getresponse()
    • JSON response

      import pandas as pd
      import json
      
      if response.status == 200:
          print('Got a response.')
          data = response.read()
          print('made the GET request...')
          data = data.decode('utf-8')
          json_data = json.loads(data)
          features = json_data['features']
          df = pd.json_normalize(features)
      
          if df.empty:
              print('No earthquakes recorded.')
          else:
              df[['Longitude', 'Latitude', 'Depth']] = df['geometry.coordinates'].apply(lambda x: pd.Series(x))
              df['datetime'] = df['properties.time'].apply(lambda x : datetime.datetime.fromtimestamp(x / 1000))
              df['datetime'] = df['datetime'].astype(str)
              df.sort_values(by=['datetime'], inplace=True)
      else:
        print(f"Error: {response.status}")