Big Data

Misc

  • Also see

    • CLI, General >> R for expressions to check file size, first 10 lines, etc. of files
    • Apache, Spark
    • MLOps >> Dask
      • Dask had a major upgrade in 2024 resulting in 20x improvement: pyarrow for strings, new shuffling algorithm, query optimization (link)

      • Benchmark: Dask vs PySpark, DuckDB, Polars (link)


        • TL;DR DuckDB clearly faster for 100GB. Results mixed between DuckDB and Dask for 1TB and 10TB, but Dask more stable at 10TB. Dask more stable than PySpark for 10TB and 1280 CPUs.
  • Get memory size and number of rows

    # rows
    fs::file_size("flights.parquet")
    #> 5.43M
    
    # size
    lobstr::obj_size(nycflights13::flights)
    #> 40.65 MB
  • Benchmarks

    • Antico (2024-06-21) - Tests {collapse}, {duckdb}, {data.table}, {{polars}}, and {{pandas}}
      • Compute: Windows 10 OS, Memory: 256GB, CPU: 32 cores / 64 threads
      • Aggregation, Melt, Cast, Windowing (lags), Union, Left Join, Inner Join, Filter
      • {collapse} best in Aggregation, Melt, Cast, Windowing
      • {{polars}} best on joins
      • The rest is mixed. Think pandas did well in few which is kind of weird since all the datasets >1M rows.

High Performance

  • {rpolars}: Arrow product; uses SIMD which is a low-level vectorization that can be used to speed up simple operations like addition, subtraction, division, and multiplication

  • {collapse}: Fast grouped & weighted statistical computations, time series and panel data transformations, list-processing, data manipulation functions, summary statistics and various utilities such as support for variable labels. Class-agnostic framework designed to work with vectors, matrices, data frames, lists and related classes i.e. xts, data.table, tibble, pdata.frame, sf.

    • Optimize a script

      options(collapse_mask = "all")
      library(collapse)
      • Optimizes any script. No other changes necessary. Quick demo.
    • vs arrow/polars (benchmark)

      • Depends on the data/groups ratio
        • If you have “many groups and little data in each group” then use collapse
      • If your calculations involve “more complex statistics algorithms like the median (involving selection) or mode or distinct value count (involving hashing)(cannot, to my knowledge, benefit from SIMD)” then use collapse.
    • set_collapse(mask = "manip"|"all") to remove f- prefixes

    • Example: groupby state + min, max, mean

      D |>
        fgroup_by(state) |> 
        fsummarise(min = fmin(measurement), 
                   max = fmax(measurement), 
                   mean = fmean(measurement)) |>
        fungroup()
    • {fastplyr} - Has a {dplyr} API and a {collapse} backend

  • {r2c}: Fast grouped statistical computation; currently limited to a few functions, sometimes faster than {collapse}

  • {data.table}: Enhanced data frame class with concise data manipulation framework offering powerful aggregation, extremely flexible split-apply-combine computing, reshaping, joins, rolling statistics, set operations on tables, fast csv read/write, and various utilities such as transposition of data.

  • {rfast}: A collection of fast (utility) functions for data analysis. Column- and row- wise means, medians, variances, minimums, maximums, many t, F and G-square tests, many regressions (normal, logistic, Poisson), are some of the many fast functions

    • The vast majority of the functions accept matrices only, not data.frames.

    • Do not have matrices or vectors with have missing data (i.e NAs). There are no checks and C++ internally transforms them into zeros (0), so you may get wrong results.

    • Example: groupby state + min, max, mean

      lev_int <- as.numeric(D$state)
      minmax <- Rfast::group(D$measurement, lev_int, method = "min.max")
      data.frame(
          state = levels(D$state),
          mean = Rfast::group(D$measurement, lev_int, method = "mean"),
          min = minmax[1, ],
          max = minmax[2, ]
      )
  • {matrixStats}: Efficient row-and column-wise (weighted) statistics on matrices and vectors, including computations on subsets of rows and columns.

  • {kit}: Fast vectorized and nested switches, some parallel (row-wise) statistics, and some utilities such as efficient partial sorting and unique values.

  • {fst}: A compressed data file format that is very fast to read and write. Full random access in both rows and columns allows reading subsets from a ‘.fst’ file.

Larger than Memory

Misc

  • Also see CLI, General >> AWK
  • Only work with a sample of the data
    • Random sample in CLI
      • See binder for code
      • Also this snippet from Healy for a zipped csv.
        • Improved version

          gzip -cd giantfile.csv.gz | (read HEADER; echo $HEADER; perl -ne 'print if (rand() < 0.001)’) > sample.csv
          • Removes the need to decompress the file twice, adds the header row, and removes the risk of a double header row
    • Only read the first n lines
      • set n_max arg in readr::read_*
  • Operate on chunks
    • {readr::read_csv_chunked}

    • Example: Filter

      # Cars with 3 gears
      f <- function(x, pos) subset(x, gear == 3)
      readr::read_csv_chunked("mtcars.csv", 
                       DataFrameCallback$new(f), 
                       chunk_size = 5)
      • Performs a subset on 5 rows at a time
  • R + CLI
    • {data.table::fread} + CLI tools
      • For large csvs and fixing large csv with jacked-up formating, see article (RBlogger version)
  • sq (pronouced “seek”) - Allows people who prefer jq syntax over SQL to use jq syntax on SQL data sources
    • Executes jq-like queries, or database-native SQL. It can join across sources: join a CSV file to a Postgres table, or MySQL with Excel.

    • Outputs to a multitude of formats including JSON, Excel, CSV, HTML, Markdown and XML, and can insert query results directly to a SQL database.

    • Can also inspect sources to view metadata about the source structure (tables, columns, size). You can use sq diff to compare tables, or entire databases. sq has commands for common database operations to copy, truncate, and drop tables.

    • Commands

      • add: Add data source
      • cache: Manage cache
      • config: Manage config
      • db: Useful database actions
      • diff: BETA: Compare sources, or tables
      • driver: Manage drivers
      • group: Get or set active group
      • inspect: Inspect data source schema and stats
      • ls: List sources and groups
      • mv: Move/rename sources and groups
      • ping: Ping data sources
      • rm: Remove data source or group
      • sql: Execute DB-native SQL query or statement
      • src: Get or set active data source
      • tbl: Useful table actions (copy, truncate, drop)
    • Example: (source)

      $ curl --silent --fail --output inthewild.db "https://pub-4c1eae2a180542b19ea7c88f1e4ccf07.r2.dev/inthewild.db"
      
      $ sq add ./inthewild.db --handle @itw
      @itw  sqlite3  inthewild.db
      
      $ sq inspect @itw
      SOURCE  DRIVER   NAME          FQ NAME            SIZE     TABLES  VIEWS  LOCATION
      @itw    sqlite3  inthewild.db  inthewild.db.main  130.7MB  4       0      sqlite3:///Users/hrbrmstr/projects/sq/inthewild.db
      
      NAME              TYPE   ROWS    COLS
      _litestream_lock  table  0       id
      _litestream_seq   table  1       id, seq
      exploits          table  99990   id, referenceURL, timeStamp, source, type
      vulns             table  260013  id, referenceURL, description, lastUpdated
      
      $ sq --src @itw sql "SELECT id, lastUpdated FROM vulns LIMIT 5"
      id             lastUpdated
      CVE-1999-0001  2010-12-16
      CVE-1999-0002  2009-01-26
      CVE-1999-0003  2018-10-30
      CVE-1999-0004  2018-10-12
      CVE-1999-0005  2008-09-09
      
      $ sq --json --src @itw '.vulns | where(.id == "CVE-2021-44228") | .description'
      [
        {
          "description": "Apache Log4j2 2.0-beta9 through 2.15.0…"
        }
      ]

Programs

  • datasette.io - App for exploring and publishing data. It helps people take data of any shape, analyze and explore it, and publish it as an interactive website and accompanying API.

    • Well documented, many plugins
  • Rill - A tool for effortlessly transforming data sets into powerful, opinionated dashboards using SQL.

    • Docs, Example Projects
    • Powered by Sveltekit & DuckDB = conversation-fast, not wait-ten-seconds-for-result-set fast
    • Works with your local and remote datasets – imports and exports Parquet and CSV (s3, gcs, https, local)
    • No more data analysis “side-quests” – helps you build intuition about your dataset through automatic profiling
    • No “run query” button required – responds to each keystroke by re-profiling the resulting dataset
    • Radically simple interactive dashboards – thoughtful, opinionated, interactive dashboard defaults to help you quickly derive insights from your data
    • Dashboards as code – each step from data to dashboard has versioning, Git sharing, and easy project rehydration
  • Online duckdb shell for parquet files (gist, https://shell.duckdb.org/)

    select max(wind) 
    from 'https://raw.githubusercontent.com/RobinL/iris_parquet/main/gridwatch/gridwatch_2023-01-08.parquet';
    -- Takes 6 seconds on the first query, 200ms on subsequent similar queries
    
    select * 
    from 'https://raw.githubusercontent.com/RobinL/iris_parquet/main/NSPL/NSPL.parquet' 
    where pcd = 'SW1A1AA';
    -- Takes 13 seconds on the first query, 100ms on subsequent similar queries

CSVs

  • Also see Databases, DuckDB >> SQL >> CSV Parser

  • Quak - Quick online csv (and parquet) profiler

    • Its a spreadsheet showing first 14 rows with visuals (unique categories and proportion, histograms, null count) below the column names
  • CSV Editors

    • For editing or reformatting cells

    • Popular spreadsheet programs like googlesheets (100MB) and excel (25MB online) have file size limits and they’re slow to upload to. The following programs are free(-ish) local alternatives only limited by your RAM.

    • Suggest for files over a few hundred MBs that you open as Read-Only

      • Opening the files as “Editable” will probably balloon the memory cost to at least 5 times the file size. (e.g. 350MB csv \(\rightarrow\) 2GB RAM)
    • Modern CSV - Nice modern interface, read-only mode that can open large csvs (100s of MBs) without making much of a dent in your RAM, fully featured (moreso if you pay a small-ish one time fee)

      • Docs, Feature free/upgrade list
      • Still has some functionality in read-only mode (e.g. search, sort)
    • OpenRefine - Has read-only, Several add-ons, Completely open source.

      • Docs, List of Extensions
      • No functionality when read-only (must create a project to do anything) — just reading
      • Starts with a 1024 MB RAM usage limit which is proably fine for editing around a 100MB csv. Need to set the limit higher in a config file in order to edit larger files.
      • Once you create a project, I think it has some editing features that you’d have to pay for with Modern CV.
      • Opens other file formats besides csv (e.g. xlsx, xml, json, etc)
  • xsv - A command line program for indexing, slicing, analyzing, splitting, and joining CSV files. Written in Rust.

    • Isn’t well maintained. But it is written in Rust, so may be able handle larger files that would make csvkit to slow to use.
  • xan - Written in Rust to leverage performance and parallelism, making it capable of handling large CSV files quickly

    • Docs has more examples
    • Notes from Hrbrmstr’s Daily Drop
    • Previewing CSV Files:
      • View: Display CSV files in the terminal for easy exploration
        xan view medias.csv
      • Flatten: Show a flattened view of CSV records
        xan slice -l 1 medias.csv | xan flatten -c
    • Filtering and Searching:
      • Search: Search for rows based on specific conditions
        xan search -s outreach internationale medias.csv | xan view
      • Filter: Use expressions to filter rows
        xan filter 'batch > 1' medias.csv | xan count
    • Data Manipulation:
      • Select: Choose specific columns to display
        xan select foundation_year,name medias.csv | xan view
      • Sort: Sort the CSV file based on a column
        xan sort -s foundation_year medias.csv | xan select name,foundation_year | xan view -l 10
      • Deduplicate: Remove duplicate rows based on a column
        xan dedup -s mediacloud_ids medias.csv | xan count
    • Data Analysis:
      • Frequency: Compute frequency tables for a column
        xan frequency -s edito medias.csv | xan view
      • Histogram: Print a histogram for a column
        xan frequency -s edito medias.csv | xan hist
      • Statistics: Compute descriptive statistics for columns
        xan stats -s indegree,edito medias.csv | xan transpose | xan view -I
    • Data Transformation:
      • Map: Create a new column by evaluating an expression
        xan map 'fmt("{} ({})", name, foundation_year)' key medias.csv | xan select key | xan slice -l 10
      • Transform: Transform a column by evaluating an expression.
        xan transform name'split(name, ".") | first | upper' medias.csv | xan select name | xan slice -l 10
    • Aggregation:
      • Aggregate: Perform custom aggregation on columns
        xan agg'sum(indegree) as total_indegree, mean(indegree) as mean_indegree' medias.csv | xan view -I
      • Groupby: Group rows and perform per-group aggregation
        xan groupby edito'sum(indegree) as indegree' medias.csv | xan view -I
  • csvkit - Suite of command-line tools for converting to and working with CSV. Written in Python.

    • Installation docs

      • One of the articles your terminal has to be a bash terminal but I dunno
        • If so, they recommend cmder or enabling the Linux subsystem with WSL2.
    • Notes from

      • Article with additional examples and options
    • Features

      • Print CSV files out nicely formatted
      • Cut out specific columns
      • Get statistical information about columns
    • Convert excel files to CSV files:

      in2csv excel_file.xlsx > new_file.csv
      # +remove .xlsx file
      in2csv excel_file.xlsx > new_file.csv && rm excel_file
    • Search within columns with regular expressions:

      csvgrep -c county -m "HOLT" new_file.csv
      # subset of columns (might be faster) with pretty formatting
      csvcut -c county,total_cost new_file.csv | csvgrep -c county -m "HOLT" | csvlook
      • Searches for “HOLT” in the “county” column
    • Query with SQL

      • syntax csvsql --query "ENTER YOUR SQL QUERY HERE" FILE_NAME.csv
      • Example
    • View top lines: head new_file.csv

    • View columns names: csvcut -n new_file.csv

    • Select specific columns: csvcut -c county,total_cost,ship_date new_file.csv

      • With pretty output: csvcut -c county,total_cost,ship_date new_file.csv | csvlook
      • Can also use column indexes instead of names
    • Join 2 files: csvjoin -c cf data1.csv data2.csv > joined.csv

      • “cf” is the common column between the 2 files
    • EDA-type stats:

      csvstat new_file.csv
      # subset of columns
      csvcut -c total_cost,ship_date new_file.csv | csvstat

JSON

  • JSONata - A lightweight, open-source query and transformation language for JSON data, inspired by the ‘location path’ semantics of XPath 3.1.
    • Misc
      • Notes from: Hrbrmstr’s article
      • JSONata also doesn’t throw errors for non-existing data in the input document. If during the navigation of the location path, a field is not found, then the expression returns nothing.
        • This can be beneficial in certain scenarios where the structure of the input JSON can vary and doesn’t always contain the same fields.
      • Treats single values and arrays containing a single value as equivalent
      • Both JSONata and jq can work in the browser (JSONata embedding code, demo), but jq has a slight speed edge thanks to WASM. However, said edge comes at the cost of a slow-first-start
    • Features
      • Declarative syntax that is pretty easy to read and write, which allows us to focus on the desired output rather than the procedural steps required to achieve it
      • Built-in operators and functions for manipulating and combining data, making it easier to perform complex transformations without writing custom code in a traditional programming language like python or javascript
      • User-defined functions that let us extend JSONata’s capabilities and tailor it to our specific needs
      • Flexible output structure that lets us format query results into pretty much any output type
  • jq - A lightweight and flexible command-line JSON processor written in portable C.
  • jsoncrack.com - online editor/tool to visualize nested json (or regular json)
  • jj - cli tool for nested json. Full support for ndjson as well as setting/updating/deleting values. Plus it lets you perform similar pretty/ugly printing that jq does.
  • sqlite3 - CLI utility allows the user to manually enter and execute SQL statements against an SQLite database or against a ZIP archive.
    • also directly against csv files (post)
  • textql - Execute SQL against structured text like CSV or TSV
    • Require Go language installed
    • Only for Macs or running a docker image
  • columnq-cli - sql query json, csv, parquet, arrow, and more

R

  • {arrow}

    • Convert file into parquet files
      1. pass the file path to open_dataset, use group_by to partition the Dataset into manageable chunks
      2. use write_datasetto write each chunk to a separate Parquet file—all without needing to read the full CSV file into R
    • dplyr support
  • {multiplyr}

    • Option for data > 10M rows and you only have access to one machine
    • Spreads data over local cores
  • {sparklyr}

    • Spin up a spark cluster
    • dplyr support
    • Set-up a cloud bucket and load data into it. Then, read into a local spark cluster. Process data.
  • {h2o}

    • h2o.import_file(path=path) holds data in the h2o cluster and not in memory
  • {disk.frame}

    • Supports many dplyr verbs
    • Supports  future package to take advantage of multi-core CPUs but single machine focused
    • State-of-the-art data storage techniques such as fast data compression, and random access to rows and columns provided by the fst package to provide superior data manipulation speeds
  • Matrix ops

    • See bkmks: mathematics >> packages
  • {ff}

    • See bkmks: data >> loading/saving/memory
    • Think it converts files to a ff file type, then you load them and use ffapply to perform row and column operations with base R functions and expressions
    • May not handle character and factor types but may work with {bit} pkg to solve this

Viz

  • Scatter plots
    • {scattermore}
    • {ggpointdensity}
    • {ggrastr}
      • Rasterize only specific layers of a ggplot2 plot (for instance, large scatter plots with many points) while keeping all labels and text in vector format. This allows users to keep plots within a reasonable size limit without losing the vector properties of scale-sensitive information.

      • github; tweet

      • Example

        geom_point <- function(...) {
          ggrastr::rasterise(ggplot2::geom_point(...), dpi = 300)
        }
  • H2O
    • h2o.aggregator Reduces data size to a representive sample, then you can visualize a clustering-based method for reducing a numerical/categorical dataset into a dataset with fewer rows A count column is added to show how many rows is represented by the exemplar row (I think)
      • Aggregator maintains outliers as outliers but lumps together dense clusters into exemplars with an attached count column showing the member points.
      • For cat vars:
        • Accumulate the category frequencies.
        • For the top 1,000 or fewer categories (by frequency), generate dummy variables (called one-hot encoding by ML people, called dummy coding by statisticians).
        • Calculate the first eigenvector of the covariance matrix of these dummy variables.
        • Replace the row values on the categorical column with the value from the eigenvector corresponding to the dummy values.
      • docs; article
  • {dbplot}
    • plots data that are in databases
      • Also able to plot data within a spark cluster
    • docs
  • {shinyHugePlot} - A tool to plot data with a large sample size using ‘shiny’ and ‘plotly’. Relatively small samples are obtained from the original data using a dynamic sampler algorithm
  • ObservableHQ
    • {{{deepscatter}}}
      • Thread (using Arrow, duckdb)

Modelling

  • RcppArmadillo::fastLmPure Not sure what this does but it’s rcpp so maybe faster than lm for big data.
  • .lm.fit is a base R lm function that is 30%-40% faster than lm.
  • {biglmm} - Bounded Memory Linear and Generalized Linear Models
    • Regression for data too large to fit in memory. This package functions exactly like the biglm package, but works with later versions of R.
  • duckreg - Run stratified/saturated regressions out-of-memory with duckdb
    • Provides a simple interface to run regressions on very large datasets that do not fit in memory by reducing the data to a set of summary statistics and runs weighted least squares with frequency weights.
    • Robust standard errors are computed from sufficient statistics, while clustered standard errors are computed using the cluster bootstrap.
  • {tidymodels} database modelling packages
    • Running tidymodel prediction workflows inside databases with orbital and Snowflake
    • {orbital} - Enables running predictions of tidymodels workflows inside databases.
    • {tidypredict} - Enabless running predictions inside databases
    • Supported Models
      • Linear Regression - lm()
      • Generalized Linear model - glm()
      • Random Forest models - randomForest::randomForest()
      • Random Forest models, via ranger - ranger::ranger()
      • MARS models - earth::earth()
      • XGBoost models - xgboost::xgb.Booster.complete()
      • Cubist models - Cubist::cubist()
      • Tree models, via partykit - partykit::ctree()
  • {subsampling} - Optimal Subsampling Methods for Statistical Models
    • A technique to balance the trade-off between computational efficiency and statistical efficiency when high compute resources are unavailable.
    • Provides optimal subsampling methods for various statistical models such as generalized linear models (GLM), softmax (multinomial) regression, rare event logistic regression and quantile regression model.