Snippets

Misc

  • Check whether an environment variable is empty

    nzchar(Sys.getenv("blopblopblop"))
    #> [1] FALSE
    withr::with_envvar(
      new = c("blopblopblop" = "bla"),
      nzchar(Sys.getenv("blopblopblop"))
    )
  • Use a package for a single instance using {withr::with_package}

    • Using library() will keep the package loaded during the whole session, with_package() just runs the code snippet with that package temporarily loaded. This can be useful to avoid namespace collisions for example
  • Read .csv from a zipped file

    # long way
    tmpf <- tempfile()
    tmpd <- tempfile()
    download.file('https://website.org/path/to/file.zip', tmpf)
    unzip(tmpf, exdir = tmpd)
    y <- data.table::fread(file.path(tmpd,
                           grep('csv$',
                                unzip(tmpf, list = TRUE)$Name,
                                value = TRUE)))
    unlink(tmpf)
    unlink(tmpd)
    
    # quick way
    y <- data.table::fread('curl https://website.org/path/to/file.zip | funzip')
  • Load all R scripts from a directory: for (file in list.files("R", full.names = TRUE)) source(file)

  • View dataframe in View as html table using {kableExtra}

    df_html <- kableExtra::kbl(rbind(head(df, 5), tail(df, 5)), format = "html")
    print(df_html)

Options

  • {readr}

    options(readr.show_col_types = FALSE)

Cleaning

  • Remove all objects except: rm(list=setdiff(ls(), c("train", "validate", "test")))

  • Remove NAs

    • dataframes

      df %>% na.omit
      df %>% filter(complete.cases(.))
      df %>% tidyr::drop_na()
    • variables

      df %>% filter(!is.na(x1))
      df %>% tidyr::drop_na(x1)
  • Find duplicate rows

    • {datawizard} - Extract all duplicates, for visual inspection. Note that it also contains the first occurrence of future duplicates, unlike duplicated or dplyr::distinct. Also contains an additional column reporting the number of missing values for that row, to help in the decision-making when selecting which duplicates to keep.

      df1 <- data.frame(
        id = c(1, 2, 3, 1, 3),
        year = c(2022, 2022, 2022, 2022, 2000),
        item1 = c(NA, 1, 1, 2, 3),
        item2 = c(NA, 1, 1, 2, 3),
        item3 = c(NA, 1, 1, 2, 3)
      )
      
      data_duplicated(df1, select = "id")
      #>   Row id year item1 item2 item3 count_na
      #> 1   1  1 2022    NA    NA    NA        3
      #> 4   4  1 2022     2     2     2        0
      #> 3   3  3 2022     1     1     1        0
      #> 5   5  3 2000     3     3     3        0
      
      data_duplicated(df1, select = c("id", "year"))
      #> 1   1  1 2022    NA    NA    NA        3
      #> 4   4  1 2022     2     2     2        0
    • {dplyr}

      dups <- dat %>% 
        group_by(BookingNumber, BookingDate, Charge) %>% 
        filter(n() > 1)
    • base r

      df[duplicated(df["ID"], fromLast = F) | duplicated(df["ID"], fromLast = T), ]
      
      ##        ID value_1 value_2 value_1_2
      ## 2  ID-003      6      5      6 5
      ## 3  ID-006      1      3      1 3
      ## 4  ID-003      1      4      1 4
      ## 5  ID-005      5      5      5 5
      ## 6  ID-003      2      3      2 3
      ## 7  ID-005      2      2      2 2
      ## 9  ID-006      7      2      7 2
      ## 10 ID-006      2      3      2 3
      • df[duplicated(df["ID"], fromLast = F) doesn’t include the first occurence, so also counting from the opposite direction will include all occurences of the duplicated rows
    • {tidydensity}

      data <- data.frame(
        x = c(1, 2, 3, 1),
        y = c(2, 3, 4, 2),
        z = c(3, 2, 5, 3)
      )
      
      check_duplicate_rows(data)
      #> [1] FALSE  TRUE FALSE FALSE
  • Remove duplicated rows

    • {datawizard} - From all rows with at least one duplicated ID, keep only one. Methods for selecting the duplicated row are either the first duplicate, the last duplicate, or the “best” duplicate (default), based on the duplicate with the smallest number of NA. In case of ties, it picks the first duplicate, as it is the one most likely to be valid and authentic, given practice effects.

      df1 <- data.frame(
        id = c(1, 2, 3, 1, 3),
        item1 = c(NA, 1, 1, 2, 3),
        item2 = c(NA, 1, 1, 2, 3),
        item3 = c(NA, 1, 1, 2, 3)
      )
      
      data_unique(df1, select = "id")
      #> (2 duplicates removed, with method 'best')
      #>   id item1 item2 item3
      #> 1  1     2     2     2
      #> 2  2     1     1     1
      #> 3  3     1     1     1
    • base R

      df[!duplicated(df[c("col1")]), ]
    • dplyr

      distinct(df, col1, .keep_all = TRUE)
  • Showing all combinations present in the data and creating all possible combinations

  • Fuzzy Join (alt to case_when)

    ref.df <- data.frame(
                bucket = c(“High”, “Medium-High”, “Medium-Low”, “Low”),
                value.high = c(max(USArrests$Assault), 249, 199, 149),
                value.low = c(250, 200, 150, min(USArrests$Assault)))
    USArrests %>% 
      fuzzy_join(ref.df, 
                        by = c("Assault"="value.low",
                              "Assault" = 'value.high'), 
                match_fun = c(`>=`,`<=`)) %>% 
      select(-c(value.high, value.low))
    • Also does partial matches

  • Remove elements of a list by name

    purrr::discard_at(my_list, "a")
    listr::list_remove

Functions

  • ggplot

    viz_monthly <- function(df, y_var, threshhold = NULL) {
    
      ggplot(df) +
        aes(
          x = .data[["day"]],
          y = .data[[y_var]]
        ) +
        geom_line() +
        geom_hline(yintercept = threshhold, color = "red", linetype = 2) +
        scale_x_continuous(breaks = seq(1, 29, by = 7)) +
        theme_minimal()
    }
    • aes is on the outside
      • This was a function for a shiny module
      • It’s peculier. Necessary for function or module?
  • Create formula from string

    analysis_formula <- 'Days_Attended ~ W + School'
    estimator_func <-  function(data) lm(as.formula(analysis_formula), data = data)
  • Recursive Function

    • Example

      # Replace pkg text with html
      replace_txt <- function(dat, patterns) {
        if (length(patterns) == 0) {
          return(dat)
        }
      
        pattern_str <- patterns[[1]]$pattern_str
        repl_str <- patterns[[1]]$repl_str
        replaced_txt <- dat |>
          str_replace_all(pattern = pattern_str, repl_str)
      
        new_patterns <- patterns[-1]
        replace_txt(replaced_txt, new_patterns)
      }
      • Arguments include the dataset and the iterable
      • Tests whether function has iterated through pattern list
      • Removes 1st element of the list
      • replace_text calls itself within the function with the new list and new dataset
    • Example: Using Recall and tryCatch

      load_page_completely <- function(rd) {
        # load more content even if it throws an error
        tryCatch({
            # call load_more()
            load_more(rd)
            # if no error is thrown, call the load_page_completely() function again
            Recall(rd)
        }, error = function(e) {
            # if an error is thrown return nothing / NULL
        })
      }
      • load_more is a user defined function
      • Recall is a base R function that calls the same function it’s in.

Calculations

  • Compute the running maximum per group

    (df <- structure(list(var = c(5L, 2L, 3L, 4L, 0L, 3L, 6L, 4L, 8L, 4L),
                  group = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L),
                                    .Label = c("a", "b"), class = "factor"),
                  time = c(1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L)),
              .Names = c("var", "group","time"),
              class = "data.frame", row.names = c(NA, -10L)))
    
    df[order(df$group, df$time),]
    #    var group time
    # 1    5    a    1
    # 2    2    a    2
    # 3    3    a    3
    # 4    4    a    4
    # 5    0    a    5
    # 6    3    b    1
    # 7    6    b    2
    # 8    4    b    3
    # 9    8    b    4
    # 10  4    b    5
    
    df$curMax <- ave(df$var, df$group, FUN=cummax)
    df
    var  |  group  |  time  |  curMax
    5      a        1        5
    2      a        2        5
    3      a        3        5
    4      a        4        5
    0      a        5        5
    3      b        1        3
    6      b        2        6
    4      b        3        6
    8      b        4        8
    4      b        5        8

Time Series

Base-R

  • Intervals
    • Difference between dates

      # Sample dates
      start_date <- as.Date("2022-01-15")
      end_date <- as.Date("2023-07-20")
      
      # Calculate time difference in days
      time_diff_days <- end_date - start_date
      
      # Convert days to months
      months_diff_base <- as.numeric(time_diff_days) / 30.44  # average days in a month
      
      cat("Number of months using base R:", round(months_diff_base, 2), "\n")
      #> Number of months using base R: 18.1 

{lubridate}

  • Docs

  • Intervals

    • Lubridate’s interval functions

    • Notes from: Wrangling interval data using lubridate

    • Difference between dates

      # Load the lubridate package
      library(lubridate)
      
      # Sample dates
      start_date <- ymd("2022-01-15")
      end_date <- ymd("2023-07-20")
      
      # Calculate months difference using lubridate
      months_diff_lubridate <- interval(start_date, end_date) %/% months(1)
      
      cat("Number of months using lubridate:", months_diff_lubridate, "\n")
      #> Number of months using lubridate: 18 
      • %/% is used for floor division by months. For decimals, just use /
    • Data

      (house_df <- tibble(
        person_id  = factor(c("A10232", "A10232", "A10232", "A39211", "A39211", "A28183", "A28183", "A10124")),
        house_id   = factor(c("H1200E", "H1243D", "H3432B", "HA7382", "H53621", "HC39EF", "HA3A01", "H222BA")),
        start_date = ymd(c("20200101", "20200112", "20211120", "19800101", "19900101", "20170303", "20190202", "19931023")),
        end_date   = ymd(c("20200112", "20211120", "20230720", "19891231", "20170102", "20180720", "20230720", "20230720"))
      ))
      
      #>   A tibble: 8 × 4
      #>   person_id house_id start_date end_date  
      #>   <fct>     <fct>    <date>     <date>    
      #> 1 A10232    H1200E   2020-01-01 2020-01-12
      #> 2 A10232    H1243D   2020-01-12 2021-11-20
      #> 3 A10232    H3432B   2021-11-20 2023-07-20
      #> 4 A39211    HA7382   1980-01-01 1989-12-31
      #> 5 A39211    H53621   1990-01-01 2017-01-02
      #> 6 A28183    HC39EF   2017-03-03 2018-07-20
      #> 7 A28183    HA3A01   2019-02-02 2023-07-20
      #> 8 A10124    H222BA   1993-10-23 2023-07-20
    • Create interval column

      house_df <- 
        house_df |> 
        mutate(
          # create the interval
          int = interval(start_date, end_date), 
          # drop the start/end columns
          .keep = "unused"                      
        )
      
      house_df
      #>   A tibble: 8 × 3
      #>   person_id house_id int                           
      #>   <fct>     <fct>    <Interval>                    
      #> 1 A10232    H1200E   2020-01-01 UTC--2020-01-12 UTC
      #> 2 A10232    H1243D   2020-01-12 UTC--2021-11-20 UTC
      #> 3 A10232    H3432B   2021-11-20 UTC--2023-07-20 UTC
      #> 4 A39211    HA7382   1980-01-01 UTC--1989-12-31 UTC
      #> 5 A39211    H53621   1990-01-01 UTC--2017-01-02 UTC
      #> 6 A28183    HC39EF   2017-03-03 UTC--2018-07-20 UTC
      #> 7 A28183    HA3A01   2019-02-02 UTC--2023-07-20 UTC
      #> 8 A10124    H222BA   1993-10-23 UTC--2023-07-20 UTC
    • Intersection Function

      int_intersect <- function(int, int_limits) {
        int_start(int) <- pmax(int_start(int), int_start(int_limits))
        int_end(int)   <- pmin(int_end(int), int_end(int_limits))
        return(int)
      }
      • The red dashed line is the reference interval and the blue solid line is the interval of interest
      • The function creates an interval thats the intersection of both intervals (segment between black parentheses)
    • Proportion of the Reference Interval

      int_proportion <- function(dat, reference_interval) {
      
        # start with the housing data
        dat |> 
          # only retain overlapping rows, this makes the following
          # operations more efficient by only computing what we need
          filter(int_overlaps(int, reference_interval)) |> 
          # then, actually compute the overlap of the intervals
          mutate(
            # use our earlier truncate function
            int_sect = int_intersect(int, reference_interval),
            # then, it's simple to compute the overlap proportion
            prop = int_length(int_sect) / int_length(reference_interval)
          ) |> 
          # combine different intervals per person
          summarize(prop_in_nl = sum(prop), .by = person_id)
      
      }
      • Example

        int_2017  <- interval(ymd("20170101"), ymd("20171231"))
        prop_2017 <- 
          int_proportion(dat = house_df, 
                         reference_interval = int_2017)
        
        prop_2017
        
        #> # A tibble: 3 × 2
        #>   person_id prop_in_nl
        #>   <fct>          <dbl>
        #> 1 A39211       0.00275
        #> 2 A28183       0.832  
        #> 3 A10124       1      

Parallelization

  • Making a cluster out of SSH connected machines (Thread)
    • Basic

      pacman::p_load(parallely, future, furrr)
      nodes = c("host1", "host2")
      plan(cluster, workers = nodes)
      future_map(...)
    • With {renv}

      pacman::p_load(parallely, future, furrr)
      nodes = c("host1", "host2")
      plan(cluster, workers = nodes, rscript_libs = .libPaths())
      future_map(...)